Abstract
Herein, a novel sandwich electrochemiluminescence (ECL) aptasensor was developed based on the resonance energy transfer (RET) with iridium complex doped silicate nanoparticles (SiO2@Ir) as energy donor and gold nanoparticles modified TiVC MXene (AuNPs@TiVC) as energy acceptor. Strong anodic ECL signal of SiO2@Ir was obtained through both co-reactant pathway and annihilation pathway. Electrochemical results showed that SiO2@Ir has good electron transfer rate and large specific surface area to immobilize more aptamers. AuNPs@TiVC apparently quenched the ECL signal of SiO2@Ir due to the ECL resonance energy transfer between them. In the presence of kanamycin (KAN), a sandwich type sensor was formed with the aptamer probes as connecters between the donor and the acceptor, resulting in the decrease of ECL intensity. Under the optimal condition, KAN could be sensitively detected in the range of 0.1 pg/mL to 10 ng/mL with a low detection limit of 24.5 fg/mL. The proposed ECL system exhibited satisfactory analytical performance, which can realize the detection of various biological molecules by adopting suitable aptamer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.