Abstract

Salmonella, being one of the most widespread foodborne pathogens, is a compulsory test item required by national food safety standard of China and many other countries. More sensitive and specific Salmonella detection method is still needed since traditional methods are time consuming and highly dependent on enormous manpower and material resources. In this research, a bacteria detection method based on CRISPR-Cas13a system (where CRISPR is Clustered Regularly Interspaced Short Palindromic Repeats) was proposed. The target DNA was amplified by PCR and transcribed into RNA by T7 transcriptase, which can activate the RNase activity of the Cas13a protein. The self-folding quenched fluorescent probe can be cleaved by the activated Cas13a protein to generate fluorescent signal. We named this method as PCF detection (PCR-CRISPR-Fluorescence based nucleic acid detection). In this study, PCF detection showed excellent sensitivity, which can detect Salmonella genomic DNA with a minimum of 101 aM or 10° CFU/ml Salmonella bacteria in 2hr. It also showed good specificity with no cross-reaction with other common foodborne bacteria. PRACTICAL APPLICATION: The PCF detection method proposed in this article can detect Salmonella sensitively and specifically, providing a novel strategy for the detection of foodborne pathogens in food and has great application potential in other microbial detection fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call