Abstract
The interaction of cyclophosphamide (CP) with calf thymus double-stranded DNA (dsDNA) and thermally denatured single-stranded DNA (ssDNA) immobilized at the carbon paste (CPE) and pencil graphite electrodes (PGE), was studied electrochemically based on oxidation signals of guanine and adenine using differential pulse voltammetry (DPV). As a result of the interaction of CP with DNA, the voltammetric signals of guanine and adenine increased in the case of dsDNA while a slight increase was observed in ssDNA. The effect of experimental parameters such as the interaction time between CP and DNA forms and the concentration of CP, were studied using DPV with CPE and PGE. Additionally, reproducibility and detection limits were determined using both electrodes. A comparison of the analytical performance between CPE and PGE was done. Our results showed that these two different DNA biosensors could be used for the sensitive, rapid and cost effective detection of CP itself as well as of CP–DNA interaction. Furthermore, the interaction of CP with dsDNA and ssDNA was studied in solution and at the electrode surface by means of alternating current voltammetry (ACV) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) supporting electrolyte, using a hanging mercury drop electrode (HMDE) as working electrode. The conclusions of this study were mainly based on tensammetric peaks I (at −1.183 V) and II (−1.419 V) of DNA. This study involved the interaction of CP with surface-confined and solution phase DNA where experimental parameters, such as the concentration of CP and the interaction time, were studied. By increasing the concentration of CP, an increase of peak II was observed in both ds and ssDNA, while an increase of peak I was observed only in the case of dsDNA. An overall conclusion of the study using HMDE was that the interaction of CP with surface-confined DNA significantly differed from that with solution phase DNA. The increase of peaks I and II was lower in the case of interaction of CP with surface-confined DNA, probably due to steric positioning of DNA at the electrode surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.