Abstract

A fluorogenic reaction between the chelate of Mn(II)-citric acid and terephthalic acid (PTA) was discovered, which was carried out through heating the aqueous mixture of Mn2+, citric acid and PTA. Detailed investigations indicated the reaction products were 2-hydroxyterephthalic acid (PTA-OH), which was attributed to the reaction between PTA and OH, formed by the triggering of Mn(II)-citric acid in the presence of dissolved O2. PTA-OH showed a strong blue fluorescence, peaked at 420 nm, and the fluorescence intensity presented a sensitive response to pH of the reaction system. Based on these mechanisms, the fluorogenic reaction was used for the detection of butyrylcholinesterase activity, achieving a detection limit of 0.15 U/L. The detection strategy was successfully applied in human serum samples, and it was also extended for the detection of organophosphorus pesticides and radical scavengers. Such a facile fluorogenic reaction and its stimuli-responsive properties offered an effective tool for designing detection pathways in the fields of clinical diagnosis, environmental monitoring and bioimaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call