Abstract

In this study, a reproductive switch DNA template was designed using aptasensing principles for the accurate quantification of aflatoxins. The template transformed the aflatoxin molecule into linear DNA of 102 nt. The linear DNA was subjected to a quantitative polymerase chain reaction (qPCR) to determine its initial copy number, which was positively correlated with the aflatoxin concentration. Using aflatoxin B1 (AFB1) as a model, the established method could quantify AFB1 within the range of 10-16–10-11 Mol/mL (detection limit equals 0.03 pg/mL), with a linear correlation coefficient R2 of 0.974. Good anti-interference abilities against common food ingredients and high specificity towards other mycotoxins were demonstrated. The established method was successfully applied for the quantification of AFB1 in complex foods such as soy sauce, milk, yellow wine, and peanut butter. The design of a reproductive switch template introduces a novel approach for the sensitive detection of small-molecule toxicants in foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.