Abstract

The experiments by Darbyshire and Mullin (J. Fluid Mech. 289, 83 (1995)) on the transition to turbulence in pipe flow show that there is no sharp border between initial conditions that trigger turbulence and those that do not. We here relate this behaviour to the possibility that the transition to turbulence is connected with the formation of a chaotic saddle in the phase space of the system. We quantify a sensitive dependence on initial conditions and find in a statistical analysis that in the transition region the distribution of turbulent lifetimes follows an exponential law. The characteristic mean lifetime of the distribution increases rapidly with Reynolds number and becomes inaccessibly large for Reynolds numbers exceeding about 2200. Suitable experiments to further probe this concept are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.