Abstract

The constant need of humans and animals for food resources was led to overuse of antibiotics as vital medicines. In this regard, we are now facing major concern about the risks on the food safety and environment owing to their uncontrolled disposal. Hence, the progress of simple and sensitive approaches for fast monitoring of antibiotic levels is highly desirable. Here, we aimed to describe a new sensitive and easy-to use strategy based on electrochemical single off apta-assay toward ciprofloxacin (CFX). A novel interface using 3D Au-PAMAM/rGO have been designed via full electrochemically technique on the surface of glassy carbon electrodes (GCE) and evaluated with cyclic voltammetry method. Firstly, rGO with large amount of active functional groups as substrate was fabricated on the GCE electrode. Thereby, the 3D Au-PAMAM nanocomposite was synthesized and covalently electrodeposited onto the rGO-GCE modified surface. The structure and morphology of 3D Au-PAMAM were studied using UV–Vis spectroscopy, Field emission scanning electron microscopes (FE-SEM) and Transmission electron microscopy. Also, FE-SEM and Energy-dispersive X-ray spectroscopy (EDS) have been carry out to illustrate surface morphology of electrodes. The obtained results from square wave voltammetry, different pulse voltammetry, and chronoamperometry techniques implied that the suggested scaffold could be used as facile bio-device toward antibiotic detection with low limit of quantification (LLOQ) of 1 nM and a linear range of 1 μM-1 nM. Interestingly, the suggested aptasensor is successfully used to measure CFX residues in local and pasteurized milk samples. It can be deduced that Apt/rGO/3D Au-PAMAM/GCE as a novel biocompatible interface could offer suitable, cost-effective, reliable, rapid, and user-friendly sensing device for direct determination of CFX in real samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.