Abstract

In order to improve on analytical selectivity and sensitivity, the technique of laser-induced fluorescence spectroscopy (LIFS) was combined with laser-induced breakdown spectroscopy (LIBS). The main thrust of this investigation was to address analytical scenarios in which the measurement site may be difficult to access. Hence, a remote LIBS+LIFS arrangement was set up, and the experiments were carried out on samples surrounded by air at atmospheric pressure, rather than in a controlled buffer gas environment at reduced pressure. Representative for proof of principle, the detection of aluminium, chromium, iron and silicon at trace level concentrations was pursued. These elements are of importance in numerous chemical, medical and industrial applications, and they exhibit suitable resonance transitions, accessible by radiation from a pulsed Ti:sapphire laser system (its 2nd and 3rd harmonic outputs). All investigated elements have an energy level structure in which the laser-excited level is a member of a group of closely-spaced energy levels; thus, this allowed for easy off-resonant fluorescence detection (collisional energy transfer processes). Since numerous of the relevant transition wavelengths are within a narrow spectral interval, this opens the possibility for multi-element analysis; this was demonstrated here for Cr and Fe which were accessed by rapidly changing the tuneable laser wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call