Abstract

The cyclin-dependent kinase inhibitor p21 protein is a critical regulator that mediates various biological activities, such as cell cycle progression, apoptosis, and cellular senescence. As a DNA damage-inducing agent, doxorubicin could reactivate the transcriptional activity of p53 and modulate the p21 protein level. In this work, sensitive and selective monitoring of the intracellular p21 protein in doxorubicin-treated breast cancer cells was conducted using surface plasmon resonance (SPR). The fluidic channels were pre-immobilized with double stranded (ds) DNA/proliferating cell nuclear antigen (PCNA) for the capture of the p21 protein. The incorporation of the anti-p21 antibody-streptavidin conjugate pre-formed between streptavidin and biotinylated anti-p21 antibody that specifically recognizes the p21 protein leads to signal amplification. The detection limit of 0.85 pM for the p21 protein was lower than that using the commercial enzyme-linked immunosorbent assay (ELISA) kit. The treatment of MCF-7 breast cancer cells with wild-type p53 by various doses of doxorubicin leads to differences in the extent of DNA damage. Low-level DNA damage by low-dose doxorubicin up-regulates the p21 level, and p21 exerts its anti-apoptotic function, causing p53-dependent cell cycle arrest and DNA repair. However, massive DNA damage by high-dose doxorubicin represses the expression of the p21 protein through increased proteasome activity, leading to cell apoptosis. The proposed method is sensitive, selective and label-free, holding great promise for the assay of the DNA damage-induced intracellular p21 protein and understanding of p21 protein-mediated cell cycle arrest, DNA repair, and cell apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.