Abstract

A core–shell magnetic metal–organic framework (Fe3O4 SiO2/ PAEDTC@ MIL- 101 (Fe)) was synthesized as the substrate and then covered with a surface molecularly imprinted polymer (MIP) layer. Next, Fe3O4 SiO2/ PAEDTC@ MIL- 101 (Fe) @ MIP was characterized by XRD, FT-IR, BET, VSM, TEM, and FE-SEM techniques and applied for selective, fast, and sensitive magnetic dispersive solid-phase microextraction (M-DµSPE) of diazinon from urine samples by the GC- FID detection method. The key experimental variables affecting M-DµSPE were studied and optimized by central composite design (CCD). Under optimum conditions (5 mL; sample at pH: 7.0, the mass of solid sorbent; 6 mg, extraction time; 4 min, acetonitrile as an eluent solvent; 1.5 mL, and desorption time; 3 min, and then reconstituted with 100 µL of methanol), the proposed method exhibits high sensitivity with limits of detection and quantification of 0.005 and 0.017 ng mL−1, respectively. Excellent extraction recovery (98.5 %), wide linearity range (0.02–200000 ng mL−1, R2 > 0.992), high enrichment factors (47–53), and satisfactory precision (<6.3 % RSD) were achieved. The MIP- MOF@ M-DµSPE -GC-FID method can be used with high precision and wide linearity to extract and analyze trace levels of diazinon in real urine samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call