Abstract
A core–shell magnetic metal–organic framework (Fe3O4 SiO2/ PAEDTC@ MIL- 101 (Fe)) was synthesized as the substrate and then covered with a surface molecularly imprinted polymer (MIP) layer. Next, Fe3O4 SiO2/ PAEDTC@ MIL- 101 (Fe) @ MIP was characterized by XRD, FT-IR, BET, VSM, TEM, and FE-SEM techniques and applied for selective, fast, and sensitive magnetic dispersive solid-phase microextraction (M-DµSPE) of diazinon from urine samples by the GC- FID detection method. The key experimental variables affecting M-DµSPE were studied and optimized by central composite design (CCD). Under optimum conditions (5 mL; sample at pH: 7.0, the mass of solid sorbent; 6 mg, extraction time; 4 min, acetonitrile as an eluent solvent; 1.5 mL, and desorption time; 3 min, and then reconstituted with 100 µL of methanol), the proposed method exhibits high sensitivity with limits of detection and quantification of 0.005 and 0.017 ng mL−1, respectively. Excellent extraction recovery (98.5 %), wide linearity range (0.02–200000 ng mL−1, R2 > 0.992), high enrichment factors (47–53), and satisfactory precision (<6.3 % RSD) were achieved. The MIP- MOF@ M-DµSPE -GC-FID method can be used with high precision and wide linearity to extract and analyze trace levels of diazinon in real urine samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.