Abstract

A chemically modified electrode was constructed by incorporating manganese (III) tetraphenyl porphyrine into a carbon paste matrix. The modified electrode was used as a sensitive electrochemical sensor for measuring of riboflavin. The constructed electrode exhibited catalytic properties for the electro-oxidation of riboflavin and lowered the over potential for the oxidation of this compound; consequently, the corresponding peak currents of riboflavin increased significantly. The modified electrode showed a near-Nernstian behavior for electro-oxidation of riboflavin hence, it could be a suitable voltammetric sensor for the fast and easy determination of riboflavin. A linear response in concentration range 1.0 × 10−8 – 1.0 × 10−5 M was obtained with a detection limit of 8.0 × 10−9 M (S /n = 3) for the determination of riboflavin. The electrode showed long-term stability and the standard deviation of the slope obtained after repeated calibration during a period of 3 months was 3.5% (n = 10). The modified electrode was used for differential pulse voltammetric determination of riboflavin in pharmaceutical and food samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call