Abstract

A fluorescence capillary imprinted sensor was first prepared with high selectivity and sensitivity for the detection of p-nitroaniline. The fluorescence imprinted polymer prepared by the sol-gel method using blue CdTe quantum dots as the fluorescence source was self-sucked into an activated capillary to form the fluorescence imprinted capillary (CdTe@FMIP-CA) sensor. The specificity and selectivity tests showed that the CdTe@FMIP-CA sensor has a high selective recognition ability toward p-nitroaniline. The CdTe@FMIP-CA sensor can quickly and specifically recognize p-nitroaniline within 2 min with a high specific fluorescence response efficiency. The fluorescence intensity of the CdTe@FMIP-CA sensor remained stable within 60 min. A good linear relationship was established between the fluorescence quenching efficiency of the CdTe@FMIP-CA sensor with a p-nitroaniline concentration range of 0.2-100 μmol L-1 with the detection limit of 4.6 nmol L-1 and the quantitation limit of 0.2 μmol L-1. The imprinting factor was calculated as 3.88. The method has been successfully applied for the determination of trace p-nitroaniline in lake water, tap water, urine, and serum samples. The CdTe@FMIP-CA sensor realized the sensitive and selective detection of p-nitroaniline with the lower consumption of microvolume reagent (18 μL per time), which provided a novel strategy for highly sensitive analysis of microvolume trace pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call