Abstract

We report on the development of a Faraday rotation spectroscopy (FRS) instrument using a DFB diode laser operating at 2.8 µm for the hydroxyl (OH) free radical detection. The highest absorption line intensity and the largest gJ value make the Q (1.5) double lines of the 2Π3/2 state (υ = 1 ← 0) at 2.8 µm clearly the best choice for sensitive detection in the infrared region by FRS. The prototype instrument shows shot-noise dominated performance and, with an active optical pathlength of only 25 cm and a lock-in time constant of 100 ms, achieves a 1σ detection limit of 8.2 × 10(8) OH radicals/cm3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call