Abstract
Glycoproteins play extraordinary roles in biology and clinic. The specifically sensitive detection of glycoproteins by electrochemical methods is still a challenging task due to their poor electro-activity and sensitive nature to environment. In this work, ovalbumin (OVA), a model glycoprotein, was sensitively detected by a molecularly imprinted polymer (MIP) based electrochemical sensor, which was prepared by electropolymerizing 3-thiophene boric acid in the presence of OVA. Due to boronate affinity, the rebound OVA interacted with ferrocene boric acid (Fc-BA) to construct a sandwich structural sensing platform. Dual-recognition elements, imprinted effect and the boronate affinity, enabled the sensor to recognize OVA from other proteins. The rebinding of OVA caused the current changes of thionine and Fc-BA, which were combined as a dual-signal for OVA sensitive detection with a low limit of detection of 0.82 pg/mL (S/N = 3). The good performances of sensor indicated its potential applications in clinical diagnosis and other related fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.