Abstract

A simple and effective colorimetric method for determination of Cu(2+) in real samples was developed. In this method, thiomalic acid functionalized silver nanoparticles (TMA-AgNPs) were prepared and changes in solution color, induced by the aggregation of TMA-AgNPs in the presence of Cu(2+), were employed for quantitative analysis. The surface plasmon resonance (SPR) band of our synthesized TMA-AgNPs was located at 392 nm and shifted to a longer wavelength after aggregation due to the interactions between carboxylate and Cu(2+). A band intensity ratio of A455/(A392-A455) was constructed and used to correlate with the concentration of Cu(2+). A linear relationship was found with a linear response up to 50 nM of Cu(2+). Due to the formation of a stable carboxylate Cu(2+) complex, highly sensitive detection of Cu(2+) was achieved with the estimated detection limit approaching 1 nM. Moreover, the formation of the stable complex leads to high selectivity in the detection of Cu(2+), which was verified by examination of 12 other metal ions. In the detection of Cu(2+) in real samples, results indicated that our proposed method is simple, sensitive and selective for application in such measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.