Abstract

BackgroundAnalysis of functional brain networks in Alzheimer’s disease (AD) has been hampered by a lack of reproducible, yet valid metrics of functional connectivity (FC). This study aimed to assess both the sensitivity and reproducibility of the corrected amplitude envelope correlation (AEC-c) and phase lag index (PLI), two metrics of FC that are insensitive to the effects of volume conduction and field spread, in two separate cohorts of patients with dementia due to AD versus healthy elderly controls.MethodsSubjects with a clinical diagnosis of AD dementia with biomarker proof, and a control group of subjective cognitive decline (SCD), underwent two 5-min resting-state MEG recordings. Data consisted of a test (AD = 28; SCD = 29) and validation (AD = 29; SCD = 27) cohort. Time-series were estimated for 90 regions of interest (ROIs) in the automated anatomical labelling (AAL) atlas. For each of five canonical frequency bands, the AEC-c and PLI were calculated between all 90 ROIs, and connections were averaged per ROI. General linear models were constructed to compare the global FC differences between the groups, assess the reproducibility, and evaluate the effects of age and relative power. Reproducibility of the regional FC differences was assessed using the Mann-Whitney U tests, with correction for multiple testing using the false discovery rate (FDR).ResultsThe AEC-c showed significantly and reproducibly lower global FC for the AD group compared to SCD, in the alpha (8–13 Hz) and beta (13–30 Hz) bands, while the PLI revealed reproducibly lower FC for the AD group in the delta (0.5–4 Hz) band and higher FC for the theta (4–8 Hz) band. Regionally, the beta band AEC-c showed reproducibility for almost all ROIs (except for 13 ROIs in the frontal and temporal lobes). For the other bands, the AEC-c and PLI did not show regional reproducibility after FDR correction. The theta band PLI was susceptible to the effect of relative power.ConclusionFor MEG, the AEC-c is a sensitive and reproducible metric, able to distinguish FC differences between patients with AD dementia and cognitively healthy controls. These two measures likely reflect different aspects of neural activity and show differential sensitivity to changes in neural dynamics.

Highlights

  • Cognitive functioning requires coordinated interaction between neurons within and across specialized brain areas [1]

  • We evaluated two metrics of functional connectivity (FC), in source space, in two clinically derived MEG cohorts of Alzheimer’s disease (AD) dementia and elderly control subjects, using the AEC-c and the phase lag index (PLI)

  • The test cohort consisted of 29 subjective cognitive decline (SCD) subjects and 28 AD subjects, and the validation cohort consisted of 27 SCD and 29 AD subjects

Read more

Summary

Introduction

Cognitive functioning requires coordinated interaction between neurons within and across specialized brain areas [1]. In order to assess the connectivity within and between the oscillatory systems, a degree of synchronization must be present (often measured through amplitude or phase correlation). Phase or amplitude correlation allows for effective neuronal coordination and normal cognitive functioning [3,4,5]. Analysis of functional brain networks in Alzheimer’s disease (AD) has been hampered by a lack of reproducible, yet valid metrics of functional connectivity (FC). This study aimed to assess both the sensitivity and reproducibility of the corrected amplitude envelope correlation (AEC-c) and phase lag index (PLI), two metrics of FC that are insensitive to the effects of volume conduction and field spread, in two separate cohorts of patients with dementia due to AD versus healthy elderly controls

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.