Abstract
As an increasing number of non-cardiac drugs have been reported to cause QT interval prolongation and torsades de pointes (TdP), we extensively studied the utility of atrioventricular (AV) block animals as a model to predict their torsadogenic action in human. The present review highlights such in vivo proarrhythmia models. In the case of the canine model, test substances were administered p.o. at conscious state >4 weeks after the induction of AV block, with subsequent Holter ECG monitoring to evaluate drug effects. Control AV block dogs (no pharmacological treatment) survive for several years without TdP attack. For pharmacologically treated dogs, drugs were identified as high, low or no risk. High-risk drugs induced TdP at 1-3 times the therapeutic dose. Low-risk drugs did not induce TdP at this dose range, but induced it at higher doses. No-risk drugs never induced TdP at any dose tested. Electrophysiological, anatomical histological and biochemical adaptations against persistent bradycardia-induced chronic heart failure were observed in AV block dogs. Recently, we have developed another highly sensitive proarrhythmia model using a chronic AV block cynomolgus monkey, which possesses essentially the same pathophysiological adaptations and drug responses as those demonstrated in the canine model. As a common remodelling process leading to a diminished repolarization reserve may present in patients who experience drug-induced TdP and in the AV block animals, the in vivo proarrhythmia models described in this review may be useful for predicting the risk of pharmacologically induced TdP in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.