Abstract

In this study, a simple and cost-effective metal oxide semiconductor (MOS) gas sensor, which can be fabricated utilizing only two photolithography steps, was designed and developed through the planar microelectromechanical systems (MEMS) technique. Ball-milled porous tin dioxide nanoparticle clusters were precisely drop-coated onto the integrated microheater region and subsequently characterized using a helium ion microscope (HIM). The spatial suspension of the silicon nitride platform over the silicon substrate provides superior thermal isolation and thus dramatically reduces the power consumption of the microheater. The well-designed microheater exhibits excellent thermal uniformity, which was verified both computationally and experimentally. The as-fabricated sensors were tested for ethanol gas sensing at various operating temperatures with different concentrations. At the optimal work temperature of ∼400 °C, our gas sensors demonstrated a respectable sensitivity to 1 ppm ethanol, which is the lower detection limit to most commercial products. Moreover, stable performance over repetitive testing was observed. The innovative sensor developed here is a promising candidate for portable gas sensing devices and various other commercial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.