Abstract
Malathion is one of the most commonly used organophosphorus pesticides that can cause serious harm to the ecological environment and human health. Herein, we demonstrated a label-free chemiluminescent aptasensor for the sensitive detection of malathion based on exonuclease-assisted dual signal amplification and G-quadruplex/hemin DNAzyme. Upon the addition of malathion, the aptamer probe specifically bound to the target to form a complex malathion-S3, leaving a duplex S1-S2. The complex malathion-S3 was digested by exonuclease I and the target was released. The released target was recycled to perform exonuclease I-assisted signal amplification. Furthermore, after treatment with exonuclease III, the duplex S1-S2 was converted into the secondary target ST. The secondary target ST interacted with the hairpin H1 to form a complex H1-ST, which was further digested by exonuclease III and released the secondary target. The released secondary target was recycled to perform exonuclease III-assisted signal amplification. After complete amplification, large numbers of G-quadruplex/hemin DNAzymes were generated. Under the optimal experimental conditions, the prepared aptasensor showed an excellent linear response to malathion with a detection limit of 0.47 pM. The relative standard deviations were in the range of 4.2–6.9%. Moreover, the aptasensor was successfully applied to detect malathion in spiked food and traditional Chinese medicine samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.