Abstract

Rapid and accurate detection of biomarkers was very important for early screening and treatment of diseases. Herein, a sensitive and amplification-free electrochemiluminescence (ECL) biosensor based on CRISPR/Cas12a and DNA tetrahedron nanostructures (TDNs) was constructed. Briefly, 3D TDN was self-assembled on the Au nanoparticle-deposited glassy carbon electrode surface to construct the biosensing interface. The presence of the target would activate the trans-cleavage activity of Cas12a-crRNA duplex to cleave the single-stranded DNA signal probe on the vertex of TDN, causing the Ru(bpy)32+ to fall from the electrode surface and weakened the ECL signal. Thus, the CRISPR/Cas12a system transduced the change of target concentration into an ECL signal enabling the detection of HPV-16. The specific recognition of CRISPR/Cas12a to HPV-16 made the biosensor have good selectivity, while the TDN-modified sensing interface could reduce the cleaving steric resistance and improve the cleaving performance of CRISPR/Cas12a. In addition, the pretreated biosensor could complete sample detection within 100 min with a detection limit of 8.86 fM, indicating that the developed biosensor possesses the potential application prospect for fast and sensitive nucleic acid detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.