Abstract

Copper sulfide-based ammonia (NH3) gas sensors were assembled using a genetically modified viral template. Glutamic acid residues on the filament-shaped bioscaffold surface facilitated the synthesis of nanocrystalline Cu1.8S. Each device comprised a network of biological materials decorated with a nonstoichiometric semiconductor. These chemiresistive devices had high sensitivity to NH3 concentrations from 10 to 80 ppm under room-temperature operation. Response times greater than 15 min were observed. These results demonstrate the potential of biotemplated materials for sensitive gas detection at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.