Abstract

The ability to characterize repetitive regions of the human genome is limited by the read lengths of short-read sequencing technologies. Although long-read sequencing technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies can potentially overcome this limitation, long segmental duplications with high sequence identity pose challenges for long-read mapping. We describe a probabilistic method, DuploMap, designed to improve the accuracy of long-read mapping in segmental duplications. It analyzes reads mapped to segmental duplications using existing long-read aligners and leverages paralogous sequence variants (PSVs)—sequence differences between paralogous sequences—to distinguish between multiple alignment locations. On simulated datasets, DuploMap increased the percentage of correctly mapped reads with high confidence for multiple long-read aligners including Minimap2 (74.3–90.6%) and BLASR (82.9–90.7%) while maintaining high precision. Across multiple whole-genome long-read datasets, DuploMap aligned an additional 8–21% of the reads in segmental duplications with high confidence relative to Minimap2. Using DuploMap-aligned PacBio circular consensus sequencing reads, an additional 8.9 Mb of DNA sequence was mappable, variant calling achieved a higher F1 score and 14 713 additional variants supported by linked-read data were identified. Finally, we demonstrate that a significant fraction of PSVs in segmental duplications overlaps with variants and adversely impacts short-read variant calling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call