Abstract

This paper shows a novel design of a gas sensor system based on artificial neural networks and Floating-gate MOS Transistors (FGMOS). Two types of circuits with FGMOS transistors of minimum dimensions were designed and simulated by Simulink of Matlab; simulations and experimental measurements results were compared obtaining good expectations. The reason of using FGMOS is that ANN can also be implemented with these kinds of devices, since ANN’s based on FGMOS are able to produce pseudo Gaussian-functions. These functions give a reliable option to determine the gas concentration. A sensitive thin film can be deposited on the FGMOS’s floating gate, which produces a charge variation due to the chemical reaction between the sensitive layer and the gas species, modifying the threshold voltage thereby a correlation of drain current of the FGMOS with gas concentration can be obtained. Therefore, a generator circuit was implemented for the pseudo Gaussian signal with FGMOS. This system can be applied in environments with dangerous species such as CO2, CO, methane, propane, among others. Simulations demonstrated that the implemented proposal has a good performance as an alternative method for sensing gas concentrations, compared with conventional sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.