Abstract

The individual spins associated with nitrogen-vacancy (NV) centers in diamond can serve as exquisite nanoscale magnetic field sensors, enabling (among other things) the measurement of stray fields near YIG [1] and Py [2] films influenced by spin transfer torques. This presentation provides an overview of our latest efforts to (i) reliably fabricate high-quality Py/Pt nanowires on a single-crystal diamond substrate while maintaining the performance of NVs implanted 10's of nanometers below the surface, (ii) develop a Bayesian protocol for optimal estimation of NV spin relaxation, and (iii) estimate thermal time scales in these (and other) nanocircuits while calibrating the applied microwave current. Time permitting, I will also discuss preliminary measurements (microwave transport and NV magnetometry) of driven and thermally populated spin wave modes controlled by spin Hall torques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.