Abstract

We investigate a single atom cavity-QED system directly driven by a broadband squeezed light. We demonstrate how the squeezed radiation can be used to sense the presence of a single atom in a cavity. This happens by transferring one of the photons from the field in a state with an even number of photons to the atom and thereby populating an odd number of Fock states. Specifically, the presence of the atom is sensed by remarkable changing in the presence of one photon and the loss of squeezing of the cavity field. A complete study of quantum fluctuations and the excitation of multiphoton transitions is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.