Abstract

A molecularly imprinted electrochemical sensor for neuron specific enolase (NSE) was developed by electrochemical polymerizing ionic liquid, which was functionalized with pyrrole moiety, in between gold nanoarrays. A well-defined 3D structured gold nanoarray was fabricated on a glassy carbon electrode (GCE) surface by using template-assisted electrochemical deposition technique. 1-(3-mercaptopropyl)-3-vinyl-imidazolium tetrafluoroborate was self-assembled onto the surface of gold nanoarrays to produce active sites for anchoring the molecularly imprinted film. Subsequently, an electrochemical polymerization procedure was carried out in an aqueous solution containing 1,3-di(3-N-pyrrolpropyl)imidazolium bromine ionic liquid and neuron specific enolase (NSE). After removing NSE templates, a molecularly imprinted sensor was successfully fabricated. The sensor showed high selectivity and sensitivity towards NSE, produced a linear response in the concentration range from 0.01 to 1.0ngmL−1 and had a detection limit of 2.6pgmL−1 with an incubation time of 15min. The developed sensor was demonstrated successful in determining NSE in clinical serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.