Abstract

The rapid maturing of nanotechnology and its wide range of applications not bring benefits only, so the downsides are worth noting. Nanopollutants, generally undetectable, are often found as byproducts involved in various chemical or physical reactions. Many nanopollutants are concerned and suspected of causing negative impact on human health due to their unpredictable existence in the environment. Unlike the traditional sensing systems which can detect select gaseous molecules, effective nanoparticle sensing methods are still lacking in the literature. In this paper, sensing of zinc‐containing nanopollutants suspended in N2 with a room‐temperature ionic liquid (RTIL) ([C4mim][PF6] (1‐butyl‐3‐methyl imidazolium hexafluorophosphate)) has been studied. The sensitivities (RIL/Rnano) obtained by determination of the RTIL resistance to the absorbed phosphor fly ash (<200 nm) is 7.0, while the RTIL has higher sensitivity of 11 and 10, respectively, to ZnO and ZnS nanoparticles By component‐fitted X‐ray absorption near edge structure (XANES) spectroscopy, it seems that the N‐methyl imidazole (mim) complexes are formed during sensing of the phosphor fly ash, ZnO and ZnS nanoparticles with the RTIL. The 1H and 31P NMR observations also suggest that the (mim) behaves as a carrier during sensing of nanopollutants with the RTIL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.