Abstract

p-Nitrophenol (PNP) is a nitroaromatic compound that poses a significant threat to human health and the environment due to its carcinogenic, mutagenic, cytotoxic, and embryotoxic properties at low concentrations. Therefore, the selective and sensitive detection of PNP is crucial for both human health and environmental monitoring. Boron (B) and Nitrogen (N) doped quantum dots (B,NQDs) have been found to be effective as blue-green luminescent materials for this purpose. These B,NQDs were synthesized using a one-step hydrothermal method, resulting in the formation of highly stable quantum dot. The addition of trace amounts of PNP, the luminescence of the B,NQDs was significantly quenched, which was found to be linearly dependent on the PNP concentration in the range of 100pM to 6μM. Further analysis of steady-state absorption and emission, along with photoluminescence decay dynamics, revealed the formation of both static and dynamic quenching complexes. Our simple fluorimetry-based sensor demonstrated an impressive limit of detection (LOD) of 9.08nM, making it highly selective and sensitive for the detection of PNP. Additionally, the B,NQDs exhibited exceptional stability with respect to pH, UV exposure, salinity, and storage conditions. Finally, we successfully demonstrated the detection of PNP in real water systems and pesticides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.