Abstract

Toll-like receptors (TLRs) sense structural patterns in microbial molecules and initiate immune defense mechanisms. The structures of many extracellular and intracellular domains of TLRs have been studied in the last 10 years. These structures reveal the extraordinary diversity of TLR-ligand interactions. Some TLRs use internal hydrophobic pockets to bind bacterial ligands and others use solvent-exposed surfaces to bind hydrophilic ligands. The structures suggest a common activation mechanism for TLRs: ligand binding to extracellular domains induces dimerization of the intracellular domains and so activates intracellular signaling pathways. Recently, the structure of the death domain complex of one of the signaling adapters, myeloid differentiation factor 88 (MyD88), has been determined. This structure shows how aggregation of signaling adapters recruits downstream kinases. However, we are still far from a complete understanding of TLR activation. We need to study the structures of TLR7-10 in complex with their ligands. We also need to determine the structures of TLR-adapter aggregates to understand activation mechanisms and the specificity of the signaling pathways. Ultimately, we will have to study the structures of the complete TLR signaling complexes containing full-length receptors, ligands, signaling, and bridging adapters, and some of the downstream kinases to understand how TLRs sense microbial infections and activate immune responses against them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.