Abstract

Abstract Stimulant abuse enhances dopamine release, thereby causing increased excitation. Any extent of stimulant abuse can considerably harm the user. Thus, methods of detecting stimulants must be precise, accurate, and reliable. A novel terahertz (THz) photonic crystal fiber with a Topas substrate is designed and rigorously investigated for detecting liquid amphetamine, cocaine, and ketamine. The fiber structure has a pentagonal shape and comprises circular air holes in the core and cladding spatial extents. As shown in finite element simulation, the proposed fiber yields a high relative sensitivity of approximately 80 % when any of the liquid stimulants is infiltrated in the core air holes. At 1 THz operating frequency, the proposed fiber produces a large effective mode area, negligible confinement loss, and extremely low bending and effective material losses. Other THz waveguiding properties, such as core power fraction and total loss, are also studied. Lastly, a positive and negative 2 % fabrication tolerance is set to ensure seamless potential practical realization of the fiber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.