Abstract
Innate sensing of nucleic acids lies at the heart of antiviral host defense. However, aberrant activation of innate sensors by host nucleic acids can also lead to the development of autoimmune diseases. Such host nucleic acids can also be released from stressed, damaged or dying cells into the tissue microenvironment. It however remains unclear how the extracellular nucleic acids impacts the quality of the host immune responses against viral infections. Using a mouse model of influenza A virus (IAV) infection, we uncovered an important immune-regulatory pathway that tempers the intensity of the host-response to infection. We found that host-derived DNA from necrotic cells accumulates in the lung microenvironment during IAV infection, and is sensed by the DNA receptor Absent in Melanoma 2 (AIM2). AIM2-deficiency resulted in severe immune pathology highlighted by enhanced recruitments of immune cells, and excessive systemic inflammation after IAV challenge, which led to increased morbidity and lethality in IAV-infected mice. Interestingly, these effects of AIM2 were largely independent of its ability to mediate IL-1β maturation through inflammasome complexes. Finally, ablation of accumulated DNA in the lung by transgenic expression of DNaseI in vivo had similar effects. Collectively, our results identify a novel mechanism of cross talk between PRR pathways, where sensing of hostderived nucleic acids limits immune mediated damage to virus infected tissues.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.