Abstract

Using a high-Tc radio frequency superconducting quantum interference device (rf SQUID) with a normal metal transformer, we successfully detected the nuclear quadrupole resonance (NQR) at about 888kHz of 14N in p-nitrotoluene (PNT) at room temperature. Only one coil was used as the resonator coil for the transmission and the pickup coil of the transformer. To reduce the influence of the strong excitation field, cross diodes and switches were inserted in the transformer. The signal-to-noise ratio of the NQR spectrum using high-Tc rf SQUID system was comparable to that of using a low noise preamplifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.