Abstract

In vivo real-time detection of hypochlorous acid (HClO) in biological systems plays a crucial role in diagnosing immune-related diseases. Experimentally, a benzo-bodipy probe based on the photo-induced electron transfer (PeT) sensing mechanism has been developed for live fluorescence imaging. However, there have been no theoretical studies conducted to substantiate the precision of the sensing mechanism. This paper employs density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods to investigate the fluorescence detection mechanism of benzo-bodipy derivatives (BBy-T and BBy-TO), proposing a detection approach based on dark nπ* state quenching. The study reveals that the fluorescence quenching mechanism of BBy-T is primarily regulated by a thiomorpholine moiety, involving a dark nπ* state transition non-radiatively. Furthermore, this paper explains the fluorescence enhancement observed in BBy-TO. Theoretical investigations demonstrate, based on frontier molecular orbitals (FMOs) and hole-electron analysis, that the fluorescence enhancement for BBy-TO is not governed by the previously proposed intramolecular charge transfer (ICT) mechanism in experiments but rather follows a locally excited (LE) ππ* pattern. This work offers new insights for the design of novel fluorescence probes based on bodipy and benzo derivatives, expanding the understanding of their fluorescence properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.