Abstract

It is well-known fact that elevated lead ions (Pb2+), the third most toxic among heavy metal ions in aqueous systems, pose a threat to human health and aquatic ecosystems when they exceed permissible limits. Pb2+ is commonly found in industrial waste and fertilizers, contaminating water sources and subsequently entering the human body, causing various adverse health conditions. Unlike being expelled, Pb2+ accumulates within the body, posing potential health risks. The harmful impact of presence of Pb2+ in water have prompted researchers to diligently work toward maintaining water quality. Recognizing the importance of Pb2+, this review article makes a sincere and effective effort to address the issues associated with Pb2+. This overview article gives insights into various sensing approaches to detect Pb2+ in water using different sensing materials, including 2-dimensional materials, thiols, quantum dots, and polymers. Herein, different sensing approaches such as electrochemical, optical, field effect transistor-based, micro-electromechanical system-based, and chemi resistive are thoroughly explained. Field effect transistor-based and chemiresistive work on similar principles and are compared on the basis of their fabrication processes and sensing capabilities. In conclusion, future directions for chemiresistive sensors in Pb2+ detection are proposed, emphasizing their simplicity, portability, straightforward functionality, and ease of fabrication. Notably, it sheds light on various thiol and ligand compounds and coupling strategies utilized in Pb2+ detection. This comprehensive study is expected to benefit individuals engaged in Pb2+ detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call