Abstract

Abstract Increasing empirical evidence suggests that many terrestrial arthropods, such as bees, spiders, and caterpillars, sense electric fields in their environments. This relatively newly discovered sense may play a unique role within their broader sensory ecology, alongside other fundamental senses such as vision, hearing, olfaction, and aero-acoustic sensing. Deflectable hairs are the primary candidate for the reception of electrical stimuli. From the deflections of individually innervated hairs, the arthropod can transduce environmental and ecological information. However, it is unclear what information an animal can elicit from hair receptors and how it relates to their environment. This paper explores how an arthropod may ascertain geometric and electrical information about its environment. Using two-dimensional models, we explore the possibility of electroreceptive object recognition and reconstruction via multiple observations and several deflecting hairs. We analyse how the number of hairs, the observed shape, and the observation path alter the accuracy of the reconstructed representations. The results herein indicate the formidable possibility that geometric information about the environment can be electro-mechanically measured and acquired at a distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.