Abstract

The creep evolution was followed by conducting magnetic measurements on ferromagnetic steel samples exposed to different creep strains at a constant temperature. 410 stainless steel (410 SS) rods were submitted to creep at 625°C applying a constant stress of 124 MPa for different creep times. A magnetic hysteresis curve was generated for every sample. It was found that the shape of the hysteresis curves varied with creep time. The extent of creep was assessed by measuring magnetic saturation, coercivity, and remanence. The changes in microstructure due to creep are related to variations in magnetic properties, which are explained in terms of possible magnetic domain pinning. It was observed that the microstructural changes due to creep are better correlated with the coercivity of the material. In summary, it is feasible to use a magnetoelastic sensor to detect the partial level of creep in a ferromagnetic material by nondestructive examination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.