Abstract
Surface-Enhanced Raman Spectroscopy (SERS) was employed as a spectroscopic tool to detect Bisphenol A (BPA), a building block in polycarbonate and epoxy resins or an additive in other polymer plastics like PVC, which has an endocrine disruptor effect. Silver nanoparticles (AgNPs) synthesized by using different reducing agents such as hydroxylamine (Ag@HX), citrate (Ag@Cit), borohydride (Ag@BH), and β-cyclodextrin (Ag@βCD) were employed, aiming to select the best standard SERS substrate. The lowest limit of quantification was reached at a concentration of 0.01 mM (2.3 μg/mL) of a sonicated aqueous solution by using Ag@Cit NPs and identifying two enhanced bands recorded at about 350 and 460 cm−1. In order to gain insight into the nature of the enhanced bands, and therefore into which mechanism governs the SERS signal, electrochemical spectra recorded at different electrode potentials were acquired and TD-DFT calculations were applied to a neutral silver complex of BPA, Ag2-BPA, and to its monohydroxylated chemical specie, Ag2-BPA(OH), which is present in sonicated solution. The calculated electronic structure and the resonance Raman spectra point out that a surface plasmon-like resonance inside the silver cluster dominates the SERS spectrum corresponding to the physisorbed BPA(OH) species, a charge transfer enhancement mechanism or an intramolecular resonance transition localized in the phenolic framework was then discarded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.