Abstract
Noble metal-functionalized, reduced graphene oxide (rGO)-loaded metal oxides are a new class of ternary composites that combine the advantages of each component, resulting in exceptional materials. But, there are few reports on their use as gas sensors. This paper reports the gas sensing behavior of Au or Pd-functionalized rGO-loaded ZnO nanofibers (NFs) synthesized by using a combination of facile, cost-effective sol-gel and electrospinning methods. An examination of the gas sensing properties revealed that Au-functionalized NFs have a very high response to CO gas. In particular, the gas response (Ra/Rg) to 1ppm of CO was as high as 23.5, whereas Pd-functionalized NFs showed a high response to C6H6 gas (11.8 to 1ppmC6H6). The presence of rGO/ZnO heterointerfaces, the catalytic effect of Au and Pd nanoparticles (NPs), and the high surface area of NFs were the main factors that contributed to the strong response of the Au or Pd-functionalized rGO-loaded ZnO NFs sensors. These results show that the combination of noble metals, such as Au or Pd NPs, with rGO and ZnO can impart new gas sensing functionality that is potentially useful for CO or C6H6 sensing applications, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Sensors and Actuators B: Chemical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.