Abstract
In August 2018, a group of experts working with terrestrial/marine geophysics and remote sensing methods to explore archaeological sites in Denmark, Finland, Norway, Scotland and Sweden gathered together for the first time at the Workshop ‘Sensing Archaeology in The North’. The goal was to exchange experiences, discuss challenges, and consider future directions for further developing these methods and strategies for their use in archaeology. After the event, this special journal issue was arranged to publish papers that are based on the workshop presentations, but also to incorporate work that is produced by other researchers in the field. This paper closes the special issue and further aims to provide current state-of-the-art for the methods represented by the workshop. Here, we introduce the aspects that inspired the organisation of the meeting, a summary of the 12 presentations and eight paper contributions, as well as a discussion about the main outcomes of the workshop roundtables, including the production of two searchable databases (online resources and equipment). We conclude with the position that the ‘North’, together with its unique cultural heritage and thriving research community, is at the forefront of good practice in the application and development of sensing methods in archaeological research and management. However, further method development is required, so we claim the support of funding bodies to back research efforts based on testing/experimental studies to: explore unknown survey environments and identify optimal survey conditions, as well as to monitor the preservation of archaeological remains, especially those that are at risk. It is demonstrated that remote sensing and geophysics not only have an important role in the safeguarding of archaeological sites from development and within prehistorical-historical research, but the methods can be especially useful in recording and monitoring the increased impact of climate change on sites in the North.
Highlights
IntroductionAirborne laser scanning (ALS or LiDAR hereafter), satellite imagery, terrestrial (or ground-based) geophysical prospection, or marine geophysics, inter alia, currently stand as powerful methods in archaeology to remotely find and study sites (i.e., from the ground surface, from the sea, or from the air) in a non-destructive and minimally invasive manner
Airborne laser scanning (ALS or LiDAR hereafter), satellite imagery, terrestrial geophysical prospection, or marine geophysics, inter alia, currently stand as powerful methods in archaeology to remotely find and study sites in a non-destructive and minimally invasive manner
The authors provided a review of the experiences and trends in the application of remote sensing techniques in Finnish archaeology as well as pressing issues affecting the profitable use of these techniques in both research-based investigations and cultural heritage management. They described LiDAR, with its capacity to filter vegetation, as being the most successful remote sensing method in the detection and management of Finnish archaeological sites, which contain earthwork features. The reason for this is that 73% of the land area of Finland is covered by boreal forest, a characteristic that has hindered the use of other remote sensing methods to image the more than 60% of archaeological sites estimated to be situated under forest cover
Summary
Airborne laser scanning (ALS or LiDAR hereafter), satellite imagery, terrestrial (or ground-based) geophysical prospection, or marine geophysics, inter alia, currently stand as powerful methods in archaeology to remotely find and study sites (i.e., from the ground surface, from the sea, or from the air) in a non-destructive and minimally invasive manner. Major technological developments have introduced smaller and more compact sensors, sensor arrays or multi-channel systems, and motorised or robotised ground, aerial and marine platforms, and related software that are opening new frontiers in archaeological research. These breakthroughs have allowed for the implementation of extremely fast and high-resolution surveys to discover and explore sites that are located in remote terrestrial and marine environments. The Swedish Geological Survey (SGU) launched a research program in the small community of Malå (Sweden) to develop instruments for ore body prospecting in 1936 They developed an electrical conductivity meter (slingram) and, from 1982, GPR equipment for borehole explorations. In Norway, a new generation step-frequency GPR multichannel system was developed at the Norwegian University of Science and Technology (NTNU, Trondheim) and founded as a spin-off company in 2001 (3D Radar)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.