Abstract

Sensing and responding to changes in NaCl concentration in hypersaline environments is vital for cell survival. In this paper, we identified and characterized key components of the high-osmolarity glycerol (HOG) signal transduction pathway, which is crucial in sensing hypersaline conditions in the extremely halotolerant black yeast Hortaea werneckii and in the obligate halophilic fungus Wallemia ichthyophaga. Both organisms were isolated from solar salterns, their predominating ecological niche. The identified components included homologous proteins of both branches involved in sensing high osmolarity (SHO1 and SLN1) and the homologues of mitogen-activated protein kinase module (MAPKKK Ste11, MAPKK Pbs2, and MAPK Hog1). Functional complementation of the identified gene products in S. cerevisiae mutant strains revealed some of their functions. Structural protein analysis demonstrated important structural differences in the HOG pathway components between halotolerant/halophilic fungi isolated from solar salterns, salt-sensitive S. cerevisiae, the extremely salt-tolerant H. werneckii, and halophilic W. ichthyophaga. Known and novel gene targets of MAP kinase Hog1 were uncovered particularly in halotolerant H. werneckii. Molecular studies of many salt-responsive proteins confirm unique and novel mechanisms of adaptation to changes in salt concentration.

Highlights

  • We identified and characterized key components of the highosmolarity glycerol (HOG) signal transduction pathway, which is crucial in sensing hypersaline conditions in the extremely halotolerant black yeast Hortaea werneckii and in the obligate halophilic fungus Wallemia ichthyophaga

  • Structural protein analysis demonstrated important structural differences in the HOG pathway components between halotolerant/halophilic fungi isolated from solar salterns, salt-sensitive S. cerevisiae, the extremely salt-tolerant H. werneckii, and halophilic W. ichthyophaga

  • Solar salterns and other hypersaline environments are extreme habitats that prevent the growth of most organisms except those that are well adapted to extremely high salt concentrations

Read more

Summary

Introduction

Solar salterns and other hypersaline environments are extreme habitats that prevent the growth of most organisms except those that are well adapted to extremely high salt concentrations. Structural protein analysis demonstrated important structural differences in the HOG pathway components between halotolerant/halophilic fungi isolated from solar salterns, salt-sensitive S. cerevisiae, the extremely salt-tolerant H. werneckii, and halophilic W. ichthyophaga.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.