Abstract

In this paper, a novel DRL algorithm based on a DQN is proposed for multiple mobile robots to find optimized paths. The multiple robots’ states are the inputs of the DQN. The DQN estimates the Q-value of the agents’ actions. After selecting the action with the maximum Q-value, the multiple robots’ actions are calculated and sent to them. Then, the robots will explore the area and detect the obstacles. In the area, there are static obstacles. The robots should detect the static obstacles using a LiDAR sensor. The other moving robots are recognized as dynamic obstacles that need to be avoided. The robots will give feedback on the reward and the robots’ new states. A positive reward will be given when a robot successfully arrives at its goal point. If it is in a free space, zero reward will be given. If the robot collides with a static obstacle or other robots or reaches its start point, it will receive a negative reward. Multiple robots explore safe paths to the goals at the same time, in order to improve learning efficiency. If a robot collides with an obstacle or other robots, it will stop and wait for the other robots to complete their exploration tasks. The episode will end when all robots find safe paths to reach their goals or when all of them have collisions. This collaborative behavior can reduce the risk of collisions between robots, enhance overall efficiency, and help avoid multiple robots attempting to navigate through the same unsafe path simultaneously. Moreover, storage space is used to store the optimal safe paths of all robots. Finally, the multi-robots will learn the policy to find the optimized paths to go to the goal points. The goal of the simulations and experiment is to make multiple robots efficiently and safely move to their goal points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.