Abstract

Precisely sensing and guiding cell-state transitions via the conditional genetic activation of appropriate differentiation factors is challenging. Here we show that desired cell-state transitions can be guided via genetically encoded sensors, whereby endogenous cell-state-specific miRNAs regulate the translation of a constitutively transcribed endoribonuclease, which, in turn, controls the translation of a gene of interest. We used this approach to monitor several cell-state transitions, to enrich specific cell types and to automatically guide the multistep differentiation of human induced pluripotent stem cells towards a haematopoietic lineage via endothelial cells as an intermediate state. Such conditional activation of gene expression is durable and resistant to epigenetic silencing and could facilitate the monitoring of cell-state transitions in physiological and pathological conditions and eventually the 'rewiring' of cell-state transitions for applications in organoid-based disease modelling, cellular therapies and regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.