Abstract
Chronic changes in the level of neuronal activity (over a period of days) trigger compensatory changes in synaptic function that seem to contribute to the homeostatic restoration of neuronal activity. Changes in both quantal amplitude and vesicle release contribute to homeostatic synaptic plasticity, but they are often considered as the same phenomenon. In this review, we propose a new approach to studying how neuronal activity is sensed and changes in synaptic function are expressed during synaptic compensation. Changes in quantal amplitude and vesicle release should be considered separately in an attempt to identify the sensors that trigger homeostatic synaptic plasticity. Although data are limited, current evidence suggests that the sensors triggering changes in the quantal amplitude and vesicle release exist at different locations. Furthermore, it is important to recognize that at least two different mechanisms underlie changes in quantal amplitude during homeostatic synaptic plasticity: changes in both the number of postsynaptic receptors and loading of synaptic vesicles with neurotransmitter. Finally, modulation of the probability of neurotransmitter release contributes to the changes in vesicle release associated with homeostatic synaptic plasticity. An improved understanding of where and how neuronal activity is sensed, in addition to the types of changes in synaptic function that are induced, will be needed both to design future experiments and to understand the consequences of synaptic compensation following injury to the nervous system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.