Abstract

Artificial perception for robots operating in outdoor natural environments, including forest scenarios, has been the object of a substantial amount of research for decades. Regardless, this has proven to be one of the most difficult research areas in robotics and has yet to be robustly solved. This happens namely due to difficulties in dealing with environmental conditions (trees and relief, weather conditions, dust, smoke, etc.), the visual homogeneity of natural landscapes as opposed to the diversity of natural obstacles to be avoided, and the effect of vibrations or external forces such as wind, among other technical challenges. Consequently, we propose a new survey, describing the current state of the art in artificial perception and sensing for robots in precision forestry. Our goal is to provide a detailed literature review of the past few decades of active research in this field. With this review, we attempted to provide valuable insights into the current scientific outlook and identify necessary advancements in the area. We have found that the introduction of robotics in precision forestry imposes very significant scientific and technological problems in artificial sensing and perception, making this a particularly challenging field with an impact on economics, society, technology, and standards. Based on this analysis, we put forward a roadmap to address the outstanding challenges in its respective scientific and technological landscape, namely the lack of training data for perception models, open software frameworks, robust solutions for multi-robot teams, end-user involvement, use case scenarios, computational resource planning, management solutions to satisfy real-time operation constraints, and systematic field testing. We argue that following this roadmap will allow for robotics in precision forestry to fulfil its considerable potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.