Abstract
Carbon monoxide (CO) is an endogenous signaling molecule with demonstrated pharmacological effects. For studying CO biology, there is a need for sensitive and selective fluorescent probes for CO as research tools. In developing such probes, CO gas and/or commercially available metal-carbonyl-based "CO-releasing molecules" (CORMs) have been used as CO sources. However, new findings are steadily emerging that some of these commonly used CORMs do not release CO reliably in buffers commonly used for studying such CO probes and have very pronounced chemical reactivities of their own, which could lead to the erroneous identification of "CO probes" that merely detect the CORM used, not CO. This is especially true when the CO-sensing mechanism relies on chemistry that is not firmly established otherwise. Cu2+ can quench the fluorescence of an imine-based fluorophore, DPHP, presumably through complexation. The Cu2+-quenched fluorescence was restored through the addition of CORM-3, a Ru-based CORM. This approach was reported as a new "strategy for detecting carbon monoxide" with the proposed mechanism being dependent on CO reduction of Cu2+ to Cu1+ under near-physiological conditions ( Anal. Chem. 2022, 94, 11298-11306). The study only used CORM-3 as the source of CO. CORM-3 has been reported to have very pronounced redox reactivity and is known not to release CO in an aqueous solution unless in the presence of a strong nucleophile. To assess whether the fluorescent response of the DPHP-Cu(II) cocktail to CORM-3 was truly through detecting CO, we report experiments using both pure CO and CORM-3. We confirm the reported DPHP-Cu(II) response to CORM-3 but not pure CO gas. Further, we did not observe the stated selectivity of DPHP for CO over sulfide species. Along this line, we also found that a reducing agent such as ascorbate was able to induce the same fluorescent turn-on as CORM-3 did. As such, the DPHP-Cu(II) system is not a CO probe and cannot be used to study CO biology. Corollary to this finding, it is critical that future work in developing CO probes uses more than a chemically reactive "CO donor" as the CO source. Especially important will be to confirm the ability of the "CO probe" to detect CO using pure CO gas or another source of CO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.