Abstract
Video prediction has been studied in several earlier works. However, there are two inherent limitations in existing solutions, one being the ambiguity concern and the other being the degradation problem in lengthy predictions. To overcome these limitations, this work studies using wearable inertial sensors to guide video prediction. We create a data set called Pedestrians with IMU (Ped-IMU) that records people walking around with the wearable devices to collect the relation between inertial measurement unit (IMU) and video data and propose a SensePred model to conquer these limitations. The model takes full wearable sensor information and partial video information as inputs and predicts the missing video information. Simulation results validate the effectiveness of our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.