Abstract

This paper introduces the package sensemakr for R and Stata, which implements a suite of sensitivity analysis tools for regression models developed in Cinelli and Hazlett (2020a). Given a regression model, sensemakr can compute sensitivity statistics for routine reporting, such as the robustness value, which describes the minimum strength that unobserved confounders need to have to overturn a research conclusion. The package also provides plotting tools that visually demonstrate the sensitivity of point estimates and t-values to hypothetical confounders. Finally, sensemakr implements formal bounds on sensitivity parameters by means of comparison with the explanatory power of observed variables. All these tools are based on the familiar omitted variable bias framework, do not require assumptions regarding the functional form of the treatment assignment mechanism nor the distribution of the unobserved confounders, and naturally handle multiple, non-linear confounders. With sensemakr, users can transparently report the sensitivity of their causal inferences to unobserved confounding, thereby enabling a more precise, quantitative debate as to what can be concluded from imperfect observational studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.