Abstract

BackgroundThe complex task of Electric Powered Wheelchairs (EPW) prescription relies mainly on personal experience and subjective observations despite standardized processes and protocols. The most informative measurements come from joystick monitoring, but recording direct joystick outputs require to disassemble the joystick. We propose a new solution called “SenseJoy” that is easy to plug on a joystick and is suitable to characterize the driver behavior by estimating the joystick command.MethodsSenseJoy is a pluggable system embedded on EPW built with a 3D accelerometer and a 2D gyrometer placed within the joystick and another 3D accelerometer located at the basis of the joystick. Data is sampled at 39 Hz and processed offline. First, SenseJoy sensitivity is assessed on wheelchair driving tasks performed by a group of 8 drivers (31 ± 8 years old, including one driver with left hemiplegia, one with cerebral palsy) in a lab environment. Direct joystick measurements are compared with SenseJoy estimations in different driving exercises. A second group of 5 drivers is recorded in the ecological context of a rehabilitation center (41 ± 10 years old, with two tetraplegic drivers, one tetraplegic driver with cognitive disorder, one driver post-stroke, one driver with right hemiplegia). The measurements from all groups of drivers are evaluated with an unsupervised statistical analysis, to estimate driving profile clusters.ResultsThe SenseJoy is able to measure the EPW joystick inclination angles with a resolution of 1.31% and 1.23% in backward/forward and left/right directions respectively. A statistical validation ensures that the classical joystick-based indicators are equivalent when acquired with the SenseJoy or with a direct joystick output connection. Using an unsupervised methodology, based on a similarity matrix between subjects, it is possible to characterize the driver profile from real data.ConclusionSenseJoy is a pluggable system for assessing the joystick controls during EPW driving tasks. This system can be plugged on any EPW equipped with a joystick control interface. We demonstrate that it correctly estimates the performance indicators and it is able to characterize driving profile. The system is suitable and efficient to assist therapists in their recommendation, by providing objective measures with a fast installation process.

Highlights

  • The complex task of Electric Powered Wheelchairs (EPW) prescription relies mainly on personal experience and subjective observations despite standardized processes and protocols

  • Calibration and measurement characteristics Before using SenseJoy, a calibration step is necessary to determine the maximum amplitudes of the bidirectional joystick of each EPW

  • We propose to rely on specific filtering method, called complementary filter, that is known to work well on systems like SenseJoy

Read more

Summary

Introduction

The complex task of Electric Powered Wheelchairs (EPW) prescription relies mainly on personal experience and subjective observations despite standardized processes and protocols. One can rely on mobility assistive devices to improve the well-being, such as manual wheelchairs, power wheelchairs, scooters or other motorized vehicles [1]. A correct compatibility between the driver and his mobility device is a crucial point to be beneficial and to ensure a noticeable social impact. The prescription task is a complex and challenging intervention, in order to select the appropriate wheelchair with correct settings. This complexity arises from the relationship between the wheelchair users – characterized by their needs, abilities and preferences – the available technology and the constraints of the considered environment for mobility [4]. The maneuverability and the wheelchair encumbrance, wheelchair driving is often a challenging task for the user [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call