Abstract

<p>Vegetation in terrestrial ecosystems controls a significant part of the gas and energy exchanges at the atmosphere-biosphere-pedosphere interface. Continuous spatial information about vegetation status (biophysical properties) and photosynthetic rates are needed to understand and model the responses of terrestrial ecosystems to environmental changes induced by human activity. This information is therefore critical to climate change monitoring, adaptation and mitigation. </p><p>Earth Observation (EO) allows the collection spatially continuous Earths surface reflectance at ecologically relevant scales. Recent advances in EO are bringing the chance to retrieve from space a subtle emission from vegetation originated at the core of the photosynthetic machinery of the plants: the chlorophyll sun-induced fluorescence (F). The upcoming Fluorescence Explorer (FLEX) mission from the European Space Agency (ESA) will be the first EO mission dedicated to the exploitation of this signal for the study of vegetation photosynthetic activity. FLEX will fly in tandem with Sentinel-3 (S3). This multi-sensor approach brings new opportunities to test the potential of synergistic use of multi-source data to capture scalable ecophysiological traits. The information provided by FLEX-S3 tandem together with observations from other Copernicus missions will boost the development of novel data analytical techniques, still to be realized. The development of these techniques will requires the combination of EO data with drone-based proximal sensing and tower-based eddy covariance (EC) observations. Together with modeling, this approach will allow solving critical and still open spatiotemporal scaling questions. Recent advances allow nowadays the synergistic use, processing and interpretation of data provided by multiple optical sensors featuring different spatial, spectral and temporal resolutions. The implementation of these techniques requires of the collaboration of the remote sensing, EC, and modeling communities; this need has motivated the development of a network within recently approved COST Action SENSECO. </p><p>SENSECO aims to ensure the multi-scale compatibility of EO measurements and protocols dedicated to the study of ecophysiological properties. This is needed to enable the synergistic use of multi-sensor data, as well as to ensure the transfer and exchange of knowledge on scaling approaches within the European communities. SENSECO achieves his objectives via dedicated expert workshops, training schools and short term scientific missions.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call