Abstract

How is the fundamental sense of one's body, a basic aspect of selfhood, incorporated into memories for events? Disrupting bodily self-awareness during encoding impairs functioning of the left posterior hippocampus during retrieval, which implies weakened encoding. However, how changes in bodily self-awareness influence neural encoding is unknown. We investigated how the sense of body ownership, a core aspect of the bodily self, impacts encoding in the left posterior hippocampus and additional core memory regions including the angular gyrus. Furthermore, we assessed the degree to which memories are reinstated according to body ownership during encoding and vividness during retrieval as a measure of memory strength. We immersed participants in naturalistic scenes where events unfolded while we manipulated feelings of body ownership with a full-body-illusion during functional magnetic resonance imaging scanning. One week later, participants retrieved memories for the videos during functional magnetic resonance imaging scanning. A whole brain analysis revealed that patterns of activity in regions including the right hippocampus and angular gyrus distinguished between events encoded with strong versus weak body ownership. A planned region-of-interest analysis showed that patterns of activity in the left posterior hippocampus specifically could predict body ownership during memory encoding. Using the wider network of regions sensitive to body ownership during encoding and the left posterior hippocampus as separate regions-of-interest, we observed that patterns of activity present at encoding were reinstated more during the retrieval of events encoded with strong body ownership and high memory vividness. Our results demonstrate how the sense of physical self is bound within an event during encoding, which facilitates reactivation of a memory trace during retrieval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call